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Abstract 

Dimerization of HCP(g) is treated as a convolution of two partial processes recognized in 
recent computational treatments, namely, dimerizations to the T-shaped or linear structure. 
The overall thermodynamics is influenced substantially by the presence of the two species, 
this being particularly true for the term for the heat capacity at constant pressure. Up to 
one third of the standard molar heat capacity at constant pressure of the (HCP), equilib- 
rium isomeric mixture can originate in the isomeric interplay. Characteristic heat-capacity- 
temperature maxima are described. 

INTRODUCTION 

Isomerism of molecular complexes represents their essential feature 
[l-6], though being of considerable diversity (for a new type, van der Waals 
isomers of chemically bonded molecules, see ref. 7). (HCP), serves as an 
interesting illustration. The system has so far been studied rarely [8-121; 
however the most recent report [12] supplied a complete description which 
can support further derived studies (the species is a phosphorous analogue 
of the more frequently treated HCN associating system [13-171). The 
present study deals with computational evaluation of the HCP gas-phase 
dimerization, due attention being paid to the computationally predicted 
[12] isomerism in the dimer. 

THE (HCP), ISOMERS 

Two different minimum-energy structures for (HCP), have been found 
[12]: T-shaped and linear species. Two energy approximations were used 
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TABLE 1 

Survey of the dimerization energetics [12] (in kJ mol-‘) for the T-shaped and linear (HCP), 

Association RHF MP2 

AE, = AHo7 b AE, a AHE” 

2HCP = T-shaped (HCP), - 1.39 - 0.39 - 5.48 - 4.48 
2HCP = linear (HCP), -0.15 0.25 - 2.76 - 2.36 

a Potential-energy change. 
b Ground-state energy change, i.e. the standard enthalpy change at absolute zero tempera- 

ture. 

[12] for geometry optimizations (restricted Hartree-Fock (RHF) and sec- 
ond-order perturbation (MP2) treatments, both in an ST0/6-31G** basis 
set); however, only the MP2 geometry is employed in our study (also for the 
monomer). The T-shaped isomer lies lower in both potential-energy ap- 
proximations (Table 1). Investigation of the stationary points in terms of 
the force-constant matrix revealed that only in the RHF approximation are 
both structures local energy minima; in the MP2 vibrational treatment the 
linear species exhibited a (degenerate) imaginary frequency. Hence, the 
RHF harmonic vibrational frequencies served in our approach for con- 
struction of the vibrational partition function. 

COMPUTATIONS 

We shall describe an equilibrium (n membered) isomeric mixture by the 
values of the mole fractions wi of the individual isomers. The isomeric 
mole fractions do not depend on the total pressure but on the temperature 
T only. The isomers are, in a first approximation, described by their 
potential energy terms hEi. However, if their rotational-vibrational mo- 
tions are to be considered, then relevant quantities are the standard 
enthalpy changes at absolute zero AHo7 and the isomeric partition func- 
tions qi. Under the conditions of inter-isomer thermodynamic equilibrium, 
the mole fractions are given [2,3] by 

qi exp[ -AHG/(RT)] 
wi= n 

c 4, exp[ -A4$/@T)] 
j=l 

(1) 

where R denotes the gas constant. 
The whole system thermodynamics can be described in terms of partition 

functions and energetics. For isomeric systems two categories of quantities 
are to be considered [2,3]: partial and overall. The standard partial terms 
AXi* belong to the processes dealing with the individual isomers. The 



standard overall terms AX? correspond to a total process involving a 
pseudo-species formed by the equilibrium isomeric mixture. Finally, in 
addition to the partial and overall terms, a third quantity has been 
introduced [2,3], namely, the so-called isomerism contributions to thermo- 
dynamic terms 6X, 

6X, = AX? - AXi+ (2) 

It is convenient that the most stable species (in the low-temperature 
region) be chosen as the reference structure, labelled it = 1. The relation- 
ships for isomerism contributions to enthalpy X = H, entropy X = S, or 
heat capacity at constant pressure X = Cp are given elsewhere [2,3]. It 
should, however, be mentioned that two kmds of terms are considered in 
the case of the heat capacity: relaxation SC,,, and isofractional 8Cp,Y,l. 
The latter represents an approximation of the former for temperature-m- 
dependent wi weights (the two types of terms coincide in the high- and 
low-temperature limits). 

RESULTS AND DISCUSSION 

Two energy sets are employed in our study, either RHF or MP2 
energetics. Although there is a significant difference between both energet- 
its (Table 1) (moreover, the RHF AHO7 term for the the linear isomer is 
positive), the temperature evolution of the relative stabilities (Fig. 1) is 
quite similar in both cases. In fact, only the ground-state energy separation 
between both isomers is important for the relative-stability reasoning. In 

200 400 6M) 600 

- T(K) 

Fig. 1. Temperature dependences of the weight factors wi for the T-shaped (decreasing 
curves) and linear (HCP), isomers evaluated for the RI-IF and MP2 approach. 
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TABLE 2 

Characterization of some distinguished a points in temperature interplay of the T-shaped 
and linear dimers (HCP), 

Approach Type a 

RHF 

MP2 

Cross 
M: SCp,r 
M:CF 
MI% 
Cross 
M: SC,,, 
M:C; 
M:% 

48.8 50.0 50.0 
38.7 67.3 32.7 
41.4 62.2 37.8 
37.7 69.3 30.7 

105 50.0 50.0 
84.5 69.0 31.0 
85.4 68.0 32.0 
84.0 69.4 30.6 

%,l c 
(J K-’ 
mol-‘1 

21.0 
23.8 
23.5 
23.7 
26.9 
31.5 
31.4 
31.4 

C,” 
(J K-’ 
mol-‘) 

83.7 
84.8 
85.1 
84.5 
92.5 
96.6 
96.6 
96.6 

25.0 
28.0 
27.6 
28.1 
29.0 
32.6 
32.5 
32.6 

a The equimolarity point (cross), the maximum in the isomerism contribution to heat 
capacity SCp,r (M: SC,,,), the maximum in the standard overall heat capacity at constant 
pressure C,” (M: C,“) and the maximum of the relative enhancement SC,,, /C,” of the 
C,” term by isomeric interplay (M : %). 

b w1 and w2 denote the equilibrium mole fraction of the T-shaped and the linear isomer, 
respectively, in their equilibrium mixture (wl + w2 = 100%). 

’ Isomerism contribution to heat capacity related to the species more stable in the 
low-temperature region, i.e. to the T-shaped isomer (see Table 1). 

any case, at the lowest temperatures the ground-state structure is essen- 
tially prevailing. With a further temperature increase, Fig. 1 shows a fairly 
rapid relative-stability approaching. Finally, a point of equimolarity is 
reached- the linear isomer becomes progressively more stable compared 
to the T-shaped isomer. Table 2 gives a precise specification of the 
equimolarity point in both approaches to energy. The low-temperature 
position of the equimolarity points imply that in a real experimental 
situation we should either deal with an isomeric coexistence or even with a 
prevailing linear species. 

Figure 2 illustrates the isomerism contributions to enthalpy, entropy and 
heat capacity. Again, the results from both approaches to the energetics 
are quite close. For each of the thermodynamic terms there is a tempera- 
ture interval in which the term becomes clearly significant. Especially 
interesting is the pronounced temperature maximum present with the 
relaxation isomerism contribution to heat capacity. It is interesting to note 
that the isofractional part represents a quite negligible term in the temper- 
ature region of the maximum. Again, Table 2 reports a detailed description 
of the SCP 1 maximum. 

The isomerism contributions to thermodynamics cannot be measured 
directly. Therefore, Figs. 3-5 show the standard enthalpy, entropy, and 
heat capacity at constant pressure changes for the dimerization 

2HCP(g) = (HCP),(g) (3) 
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Fig. 2. Temperature dependences of the isomerism contributions to enthalpy 6H,, entropy 
&S,, and heat capacity at constant pressure SC,,r (relaxation term) or SC,,,,, (isofractional 
term, dashed curve) for the system of the T-shaped and linear (HCP), isomers evaluated for 
the RHF and MP2 approach, the contributions are related to the T-shaped isomer. 

Actually, eqn. (3) represents three chemical processes: dimerization to 
either the T-shaped (HCP), or the linear (HCP),, and the overall dimeriza- 
tion to the pseudo-species formed by the equilibrium mixture of both 

I 
I I I 

100 200 303 403 

- T(K) 

Fig. 3. Temperature dependences of the partial (T-shaped or linear (HCP),, dashed curves) 
and overall standard enthalpy terms AH? for the HCP(g) dimerizations evaluated for the 
RHF and MP2 approach. 
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Fig. 4. Temperature dependences of the partial (T-shaped or linear (HCP),, dashed curves) 
and overall standard entropy terms ASP for the HCP@ dimerizations evaluated for the 
RHF and MP2 approach. 

isomers. Hence, there are three different terms-two partial and one 
overall Figures 3-5 show interrelations of the three terms (in the heat 
capacity case, a fourth term is also included-the isofractional part of the 
overall ACPyT term). It is evident that the temperature maximum observed 
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Fig. 5. Temperature dependences of the partial (T-shaped or linear (HCP),, dashed curves) 
and overall standard heat capacity at constant pressure terms ACj$ for the HCP@ 
dimerizations evaluated for the RHF and MP2 approach (the solid curve without maximum: 
isofractional term). 
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Fig. 6. Temperature dependences of the standard molar heat capacity at constant pressure 
for the pure T-shaped (HCP), isomer (the partial C,f: term, dashed curve) and for the 
equilibrium mixture of the two (HCP), isomers (the overall C,” term) evaluated for the 
RHF and MP2 approach. 

in Fig. 2 with the X,,, isomerism contribution is conserved in the ACpyr 
behaviour. 

Figure 6 considers the standard molar heat capacity at constant pressure 
for the dimer, presenting temperature dependences for the pure T-shaped 
(HCP), isomer (the partial C,“l> and for the equilibrium mixture of the two 
(HCP), isomers (the overall CF term). The temperature maximum is also 
present with the latter term. (It can be noticed that in the low-temperature 
limit the heat capacity at constant pressure terms do not reach the rigorous 
zero value, but the classical term 4R instead; this is an effect [18] of the 
conventional translational and rotational partition functions with wrong 
limiting behaviour.) Table 2 shows that the isomerism contribution can 
form up to nearly one third of the overall CF term. The temperature 
maxima in heat capacity reported in this study could serve as a device for 
proving the molecular-complex isomerism predicted in computations. 
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